差壓液位變送器在甲醇廠液氨儲(chǔ)罐液位精確測(cè)量的應(yīng)用方案剖析
發(fā)表時(shí)間:2020-01-11|? 聯(lián)系電話:15601403222 、 13915181149
1 前言
甲醇廠空分車間液氨儲(chǔ)罐液位測(cè)量?jī)x表設(shè)計(jì)選用P+H雷達(dá)液位計(jì)。2009年投入運(yùn)行后,因回波對(duì)測(cè)量波干擾強(qiáng)度無法消除,導(dǎo)致雷達(dá)液位計(jì)顯示值波動(dòng)較大,不能滿足廠工藝*監(jiān)控要求;2010年該儲(chǔ)罐液位測(cè)量?jī)x表改用了雙法蘭式差壓變送器,但在實(shí)際使用中,發(fā)現(xiàn)該差壓變送器指示值與實(shí)際液位仍有較大偏差,仍然不能滿足工藝過程的*控制和監(jiān)視要求。為此,對(duì)現(xiàn)場(chǎng)工藝指標(biāo)進(jìn)行了大量數(shù)據(jù)收集和系統(tǒng)的分析,找出了導(dǎo)致實(shí)際值與顯示值存在較大偏差的根本原因,并提出了切實(shí)可行的解決方案,大大降低了測(cè)量誤差,達(dá)到了工藝監(jiān)測(cè)和控制的要求。
2 測(cè)量誤差原因分析
甲醇廠使用的差壓液位變送器,是依據(jù)液體靜壓力原理和液體連通器原理來計(jì)算和測(cè)量液位的。其將一個(gè)空間用敏感元件(多用膜盒),分割成兩個(gè)不同的腔室,如果分別向正壓腔室和負(fù)壓腔室引入不同的壓力時(shí),差壓液位變送器傳感器在正壓腔壓力和負(fù)壓腔壓力的共同作用下產(chǎn)生位移(或位移的趨勢(shì)),這個(gè)位移量和兩個(gè)腔室壓力的差(差壓)成正比,差壓液位變送器的變送單元裝置,將這種位移量轉(zhuǎn)換成可以反映差壓大小的標(biāo)準(zhǔn)信號(hào)(一般是電流為4~20mA直流信號(hào))進(jìn)行輸出,DCS控制系統(tǒng)(或二次儀表)通過接收差壓式液位變送器輸出的標(biāo)準(zhǔn)信號(hào),然后按照接收到的標(biāo)準(zhǔn)信號(hào)的大小和測(cè)量液體的密度,計(jì)算出被測(cè)液體的實(shí)際液位。其測(cè)量原理如圖1所示。
由液體靜壓力原理得:
H=(P0-P1)/ρ液(1)
由液體連通器原理得:
P0=P++H0×ρ液(2)
P1=P--(H-H0)×ρ汽(3)
其中,H為儲(chǔ)罐液位,H0為差壓式液位變送器安裝位置距儲(chǔ)罐底部的距離,P1為儲(chǔ)罐內(nèi)部液體表面靜壓,P0為儲(chǔ)罐內(nèi)液體本身產(chǎn)生的壓力,ρ液為儲(chǔ)罐內(nèi)部液體的密度,ρ汽為儲(chǔ)罐內(nèi)部氣體的密度,P+為差壓式變送器正壓腔室內(nèi)部壓力,P-為差壓式變送器負(fù)壓腔室內(nèi)部壓力。
將式(2)、式(3)代入式(1)整理后可得:
H=△P/(ρ液-ρ汽)+H0 (4)
由式(4)可以分析出,影響儲(chǔ)罐液位測(cè)量高度是否*的因素,不僅取決與差壓式位變送器測(cè)量的差壓值△P,還取決與被測(cè)量液體汽液相密度的差(ρ液-ρ汽)和差壓式變送器實(shí)際安裝的高度H0。同時(shí)被測(cè)液體汽液相密度差(ρ液-ρ汽),是隨著介質(zhì)溫度而變化,但差壓式液位變送器本身對(duì)這些因素是無法測(cè)量的, 差壓式變送器本身在計(jì)算液位高度值H時(shí),采用的是(ρ液-ρ汽)的測(cè)量值。這樣,必然會(huì)造成液體實(shí)際液位高度值和儀表測(cè)量指示值之間的偏差。同時(shí),由于被測(cè)液體實(shí)際溫度和壓力的變化,在汽氨的導(dǎo)壓管路中,也會(huì)使汽氨液化,從而產(chǎn)生不同高度的液柱(不同高度的液柱將產(chǎn)生不同的壓力),進(jìn)而影響測(cè)量的精度。
設(shè)導(dǎo)壓管內(nèi)液化產(chǎn)生液柱的高度為H1,則原(3)式、(4)式應(yīng)修正為:
P1=P-(H-H0)×ρ汽-(H-H1-H0)×ρ汽(5)
H=△P/(ρ液-ρ汽)+H0+H0+H1 (6)
在測(cè)量中,由于H1的實(shí)際值無法測(cè)量(同時(shí)H1也和安裝高度、環(huán)境溫度以及維護(hù)人員素質(zhì)有關(guān))而經(jīng)常被忽略不計(jì),這必然會(huì)造成實(shí)際液位高度值和儀表指示值之間的偏差。zui后,儀表本身的制造精度,也會(huì)造成不同程度的測(cè)量偏差。綜上所述,甲醇廠液氨儲(chǔ)罐液位測(cè)量偏差的主要來源包括:被測(cè)液氨實(shí)際溫度和壓力的變化、汽氨引壓管路中液柱的高度,以及儀表制造精度本身的測(cè)量偏差。
3 糾偏方案
3.1 對(duì)液氨實(shí)際溫度變化的補(bǔ)償方案
要降低被測(cè)介質(zhì)的實(shí)際溫度變化對(duì)液位測(cè)量精度的影響,目前常常采用以下兩種方案:①對(duì)被測(cè)介質(zhì)進(jìn)行保溫,保證被測(cè)介質(zhì)溫度保持相對(duì)恒定。②對(duì)被測(cè)介質(zhì)溫度進(jìn)行實(shí)時(shí)測(cè)量,對(duì)被測(cè)介質(zhì)溫度變化引起的測(cè)量偏差進(jìn)行補(bǔ)償。方案一工程量較大,造價(jià)高,而且由于環(huán)境溫度、工藝控制等不同因素的影響,很難保證在生產(chǎn)過程中介質(zhì)溫度的**恒定;方案二的工程量?。▋H安裝一套測(cè)溫變送儀表即可),雖然需要進(jìn)行非常繁瑣的計(jì)算,但是在原有的DCS控制系統(tǒng)中卻是很容易實(shí)現(xiàn)的。因此,選用方案二進(jìn)行補(bǔ)償。
要實(shí)現(xiàn)對(duì)被測(cè)液體溫度變化引起的液位偏差進(jìn)行補(bǔ)償,**要明確測(cè)量介質(zhì)(氨)的密度隨溫度變化的函數(shù)關(guān)系:ρ液=F(T)和ρ汽=f(T),二是根據(jù)液體的靜壓力原理和連通器原理,求出液體實(shí)際高度計(jì)算公式:即h=H(T,△P),zui后修改DCS控制系統(tǒng)程序,用已測(cè)量出介質(zhì)的實(shí)時(shí)溫度和液差壓式液位變送器測(cè)量出的差壓值,計(jì)算出儲(chǔ)罐中氨的實(shí)際液位高度值。
3.1.1 氨的密度與溫度之間函數(shù)關(guān)系式的確定
目前,被測(cè)介質(zhì)氨的密度與溫度之間的函數(shù)關(guān)系,很難用非常準(zhǔn)確的數(shù)學(xué)模型來表示,但氨這種介質(zhì)在飽和狀態(tài)下的密度與溫度之間的關(guān)系是一定的,在一定的溫度范圍內(nèi),完全可以用統(tǒng)計(jì)分析等相關(guān)技術(shù),來擬合出一條近似的曲線來表示它們之間的關(guān)系。表1列出的是在0℃~30℃的溫度范圍內(nèi),介質(zhì)氨在飽和狀態(tài)下的密度與溫度之間的對(duì)應(yīng)的關(guān)系。
為了進(jìn)一步分析被測(cè)介質(zhì)氨的密度與溫度之間的對(duì)應(yīng)關(guān)系,根據(jù)表1的數(shù)據(jù),描出了汽氨和液氨的密度—溫度關(guān)系散點(diǎn)圖,見圖2。
從圖2可以看出:在一定的溫度范圍內(nèi),被測(cè)介質(zhì)氨的密度與溫度有很密切的相關(guān)性,即汽氨的密度與溫度的函數(shù)關(guān)系,可以近似為指數(shù)函數(shù)關(guān)系,而液氨的密度與溫度則是線性相關(guān)。
為了進(jìn)一步得到氨的密度與溫度之間變化的*數(shù)學(xué)模型,利用Excel軟件提供的函數(shù)公式,依據(jù)表1列出的數(shù)據(jù),對(duì)液氨的密度與溫度之間的關(guān)系進(jìn)行線性回歸。同時(shí),對(duì)汽氨的密度與溫度的關(guān)系進(jìn)行指數(shù)回歸,可以得出如下關(guān)系式:
ρ液=0.639-0.00145×t (7)
ρ汽=3.5125×1.0324t (8)
3.1.2 函數(shù)關(guān)系回歸偏差的排除
為了降低數(shù)學(xué)模型回歸本身帶來的偏差,假設(shè)△P、H1、H0均為常數(shù),且H1、H0均為零。這樣,由(6)式得:H=△P/(ρ液-ρ汽) (9)
數(shù)學(xué)模型回歸本身引起的偏差即為:
△H=△P/(ρ液-ρ汽)-△P/(ρ液標(biāo)-ρ汽標(biāo)) (10)其中:ρ液、ρ汽為某一特定溫度下氨的數(shù)學(xué)模型回歸密度值,ρ液標(biāo)、ρ汽標(biāo)為該溫度下氨的實(shí)際密度值。將(10)式除以(9)式得:
△H/H=1-(ρ液-ρ汽)(/ ρ液標(biāo)-ρ汽標(biāo)) (11)
在0℃~30℃范圍內(nèi),儲(chǔ)罐中氨的存在形式往往不會(huì)真正處于飽和狀態(tài),汽氨的實(shí)際溫度往往會(huì)高于液氨的實(shí)際溫度(zui高差距有時(shí)可達(dá)到10℃以上)。當(dāng)汽氨的實(shí)際溫度變化時(shí),其密度也會(huì)產(chǎn)生相應(yīng)的變化。因此,如果用飽和狀態(tài)下的液氨溫度,來計(jì)算汽氨當(dāng)前的密度,會(huì)引起測(cè)量的偏差。因此在計(jì)算中,當(dāng)液氨的實(shí)際溫度為15℃時(shí),(10)式中的ρ液標(biāo)應(yīng)取t=(10+15)℃時(shí)相對(duì)應(yīng)的溫度值。此時(shí),△H/H=-0.0429%。由此可以看出:在此溫度范圍內(nèi),氨的數(shù)學(xué)模型擬合過程本身引起的zui大正偏差為0.070%,zui大負(fù)偏差為0.0429%,這個(gè)偏差小到可以忽略不計(jì)的程度。因此,按照以上方案擬合的數(shù)學(xué)模型,相對(duì)準(zhǔn)確地再現(xiàn)了氨的密度與溫度之間的函數(shù)關(guān)系。
3.1.3 儲(chǔ)罐液位的計(jì)算
將(7)式、(8)式代入(6)式可得:
H=△P/(0.639-0.00145×t-3.5125×1.0324t)-H0-H1 (12)
按照上式計(jì)算出的液氨液位,基本上可以消除實(shí)際生產(chǎn)過程中現(xiàn)場(chǎng)實(shí)時(shí)溫度變化,對(duì)液位測(cè)量的影響。消除液柱引起的偏差有兩個(gè)方案:**可以在汽氨導(dǎo)壓管的zui高點(diǎn)加一隔離罐,使式(6)中的H1為一常數(shù);二是取消差壓液位變送器,直接采用壓力變送器,測(cè)量?jī)?chǔ)罐頂部的汽氨壓力和儲(chǔ)罐底部的液氨壓力來計(jì)算液位。方案二可以直接利用現(xiàn)已安裝的壓力變送器,不需要再增加設(shè)備,只需要在現(xiàn)有的DCS控制系統(tǒng)中,改變?cè)械慕M態(tài)就可以實(shí)現(xiàn)。因此,選用了二種方案。
根據(jù)液體的靜壓力原理和液體的連通器原理得:
H=(P0-P1)/ρ液(13)
P0=P液-H0×ρ液(14)
P1=P汽+(H1-H)×ρ汽(15)
將(10)式、(11)式帶入(9)式:
H=(P液-P汽)(/ ρ液-ρ汽)-H0-(H1+H0)×ρ汽(/ ρ液-ρ汽)(16)將(7)式、(8)式帶入(12)式,求出的液位計(jì)算公式為:
H=(P 液 - P 汽)(/ 0.639- 0.00145 × t- 0.0035125 ×1.0324t)- H0-(H1 + H0)× 0.0035125 × 1.0324(t/ 0.639-0.00145×t-0.0035125×1.0324t) (17)
其中,P液為液氨壓力的實(shí)際測(cè)量值,P汽為汽氨壓力的實(shí)際測(cè)量值,H1為液氨壓力變送器安裝位置距液氨儲(chǔ)罐底部的距離,H0為汽氨壓變送器表安裝位置距液氨儲(chǔ)罐底部的距離,t為被測(cè)介質(zhì)氨在飽和狀態(tài)下的實(shí)際溫度值。從(17)式可以看出,儲(chǔ)罐液氨實(shí)際高度H的大小取決于P液、P汽、H1、t和H0的值,壓力變送器的安裝高度H1、和H0的值是固定不變的,t是現(xiàn)有DCS控制系統(tǒng)中已經(jīng)測(cè)量到的變量值。
4 結(jié)論
本論文找出了導(dǎo)致甲醇廠液氨儲(chǔ)罐液位,在實(shí)際測(cè)量過程中存在較大偏差的根本原因,并提出了切實(shí)可行的溫度和液柱補(bǔ)償糾偏方案,采用差壓液位變送器進(jìn)行液位計(jì)測(cè)量方案,基本消除了液氨實(shí)際溫度變化和液柱高度等不確定因素,對(duì)測(cè)量精度的影響,達(dá)到了液氨儲(chǔ)罐液位*監(jiān)測(cè)和控制的要求。同時(shí),對(duì)解決同行業(yè)、同類相關(guān)介質(zhì)液位的*測(cè)量問題,提供了理論思路。
甲醇廠空分車間液氨儲(chǔ)罐液位測(cè)量?jī)x表設(shè)計(jì)選用P+H雷達(dá)液位計(jì)。2009年投入運(yùn)行后,因回波對(duì)測(cè)量波干擾強(qiáng)度無法消除,導(dǎo)致雷達(dá)液位計(jì)顯示值波動(dòng)較大,不能滿足廠工藝*監(jiān)控要求;2010年該儲(chǔ)罐液位測(cè)量?jī)x表改用了雙法蘭式差壓變送器,但在實(shí)際使用中,發(fā)現(xiàn)該差壓變送器指示值與實(shí)際液位仍有較大偏差,仍然不能滿足工藝過程的*控制和監(jiān)視要求。為此,對(duì)現(xiàn)場(chǎng)工藝指標(biāo)進(jìn)行了大量數(shù)據(jù)收集和系統(tǒng)的分析,找出了導(dǎo)致實(shí)際值與顯示值存在較大偏差的根本原因,并提出了切實(shí)可行的解決方案,大大降低了測(cè)量誤差,達(dá)到了工藝監(jiān)測(cè)和控制的要求。
?
2 測(cè)量誤差原因分析
甲醇廠使用的差壓液位變送器,是依據(jù)液體靜壓力原理和液體連通器原理來計(jì)算和測(cè)量液位的。其將一個(gè)空間用敏感元件(多用膜盒),分割成兩個(gè)不同的腔室,如果分別向正壓腔室和負(fù)壓腔室引入不同的壓力時(shí),差壓液位變送器傳感器在正壓腔壓力和負(fù)壓腔壓力的共同作用下產(chǎn)生位移(或位移的趨勢(shì)),這個(gè)位移量和兩個(gè)腔室壓力的差(差壓)成正比,差壓液位變送器的變送單元裝置,將這種位移量轉(zhuǎn)換成可以反映差壓大小的標(biāo)準(zhǔn)信號(hào)(一般是電流為4~20mA直流信號(hào))進(jìn)行輸出,DCS控制系統(tǒng)(或二次儀表)通過接收差壓式液位變送器輸出的標(biāo)準(zhǔn)信號(hào),然后按照接收到的標(biāo)準(zhǔn)信號(hào)的大小和測(cè)量液體的密度,計(jì)算出被測(cè)液體的實(shí)際液位。其測(cè)量原理如圖1所示。
由液體靜壓力原理得:
H=(P0-P1)/ρ液(1)
由液體連通器原理得:
P0=P++H0×ρ液(2)
P1=P--(H-H0)×ρ汽(3)
其中,H為儲(chǔ)罐液位,H0為差壓式液位變送器安裝位置距儲(chǔ)罐底部的距離,P1為儲(chǔ)罐內(nèi)部液體表面靜壓,P0為儲(chǔ)罐內(nèi)液體本身產(chǎn)生的壓力,ρ液為儲(chǔ)罐內(nèi)部液體的密度,ρ汽為儲(chǔ)罐內(nèi)部氣體的密度,P+為差壓式變送器正壓腔室內(nèi)部壓力,P-為差壓式變送器負(fù)壓腔室內(nèi)部壓力。
將式(2)、式(3)代入式(1)整理后可得:
H=△P/(ρ液-ρ汽)+H0 (4)
由式(4)可以分析出,影響儲(chǔ)罐液位測(cè)量高度是否*的因素,不僅取決與差壓式位變送器測(cè)量的差壓值△P,還取決與被測(cè)量液體汽液相密度的差(ρ液-ρ汽)和差壓式變送器實(shí)際安裝的高度H0。同時(shí)被測(cè)液體汽液相密度差(ρ液-ρ汽),是隨著介質(zhì)溫度而變化,但差壓式液位變送器本身對(duì)這些因素是無法測(cè)量的, 差壓式變送器本身在計(jì)算液位高度值H時(shí),采用的是(ρ液-ρ汽)的測(cè)量值。這樣,必然會(huì)造成液體實(shí)際液位高度值和儀表測(cè)量指示值之間的偏差。同時(shí),由于被測(cè)液體實(shí)際溫度和壓力的變化,在汽氨的導(dǎo)壓管路中,也會(huì)使汽氨液化,從而產(chǎn)生不同高度的液柱(不同高度的液柱將產(chǎn)生不同的壓力),進(jìn)而影響測(cè)量的精度。
設(shè)導(dǎo)壓管內(nèi)液化產(chǎn)生液柱的高度為H1,則原(3)式、(4)式應(yīng)修正為:
P1=P-(H-H0)×ρ汽-(H-H1-H0)×ρ汽(5)
H=△P/(ρ液-ρ汽)+H0+H0+H1 (6)
在測(cè)量中,由于H1的實(shí)際值無法測(cè)量(同時(shí)H1也和安裝高度、環(huán)境溫度以及維護(hù)人員素質(zhì)有關(guān))而經(jīng)常被忽略不計(jì),這必然會(huì)造成實(shí)際液位高度值和儀表指示值之間的偏差。zui后,儀表本身的制造精度,也會(huì)造成不同程度的測(cè)量偏差。綜上所述,甲醇廠液氨儲(chǔ)罐液位測(cè)量偏差的主要來源包括:被測(cè)液氨實(shí)際溫度和壓力的變化、汽氨引壓管路中液柱的高度,以及儀表制造精度本身的測(cè)量偏差。
3 糾偏方案
3.1 對(duì)液氨實(shí)際溫度變化的補(bǔ)償方案
要降低被測(cè)介質(zhì)的實(shí)際溫度變化對(duì)液位測(cè)量精度的影響,目前常常采用以下兩種方案:①對(duì)被測(cè)介質(zhì)進(jìn)行保溫,保證被測(cè)介質(zhì)溫度保持相對(duì)恒定。②對(duì)被測(cè)介質(zhì)溫度進(jìn)行實(shí)時(shí)測(cè)量,對(duì)被測(cè)介質(zhì)溫度變化引起的測(cè)量偏差進(jìn)行補(bǔ)償。方案一工程量較大,造價(jià)高,而且由于環(huán)境溫度、工藝控制等不同因素的影響,很難保證在生產(chǎn)過程中介質(zhì)溫度的**恒定;方案二的工程量?。▋H安裝一套測(cè)溫變送儀表即可),雖然需要進(jìn)行非常繁瑣的計(jì)算,但是在原有的DCS控制系統(tǒng)中卻是很容易實(shí)現(xiàn)的。因此,選用方案二進(jìn)行補(bǔ)償。
要實(shí)現(xiàn)對(duì)被測(cè)液體溫度變化引起的液位偏差進(jìn)行補(bǔ)償,**要明確測(cè)量介質(zhì)(氨)的密度隨溫度變化的函數(shù)關(guān)系:ρ液=F(T)和ρ汽=f(T),二是根據(jù)液體的靜壓力原理和連通器原理,求出液體實(shí)際高度計(jì)算公式:即h=H(T,△P),zui后修改DCS控制系統(tǒng)程序,用已測(cè)量出介質(zhì)的實(shí)時(shí)溫度和液差壓式液位變送器測(cè)量出的差壓值,計(jì)算出儲(chǔ)罐中氨的實(shí)際液位高度值。
3.1.1 氨的密度與溫度之間函數(shù)關(guān)系式的確定
目前,被測(cè)介質(zhì)氨的密度與溫度之間的函數(shù)關(guān)系,很難用非常準(zhǔn)確的數(shù)學(xué)模型來表示,但氨這種介質(zhì)在飽和狀態(tài)下的密度與溫度之間的關(guān)系是一定的,在一定的溫度范圍內(nèi),完全可以用統(tǒng)計(jì)分析等相關(guān)技術(shù),來擬合出一條近似的曲線來表示它們之間的關(guān)系。表1列出的是在0℃~30℃的溫度范圍內(nèi),介質(zhì)氨在飽和狀態(tài)下的密度與溫度之間的對(duì)應(yīng)的關(guān)系。
為了進(jìn)一步分析被測(cè)介質(zhì)氨的密度與溫度之間的對(duì)應(yīng)關(guān)系,根據(jù)表1的數(shù)據(jù),描出了汽氨和液氨的密度—溫度關(guān)系散點(diǎn)圖,見圖2。
從圖2可以看出:在一定的溫度范圍內(nèi),被測(cè)介質(zhì)氨的密度與溫度有很密切的相關(guān)性,即汽氨的密度與溫度的函數(shù)關(guān)系,可以近似為指數(shù)函數(shù)關(guān)系,而液氨的密度與溫度則是線性相關(guān)。
為了進(jìn)一步得到氨的密度與溫度之間變化的*數(shù)學(xué)模型,利用Excel軟件提供的函數(shù)公式,依據(jù)表1列出的數(shù)據(jù),對(duì)液氨的密度與溫度之間的關(guān)系進(jìn)行線性回歸。同時(shí),對(duì)汽氨的密度與溫度的關(guān)系進(jìn)行指數(shù)回歸,可以得出如下關(guān)系式:
ρ液=0.639-0.00145×t (7)
ρ汽=3.5125×1.0324t (8)
3.1.2 函數(shù)關(guān)系回歸偏差的排除
為了降低數(shù)學(xué)模型回歸本身帶來的偏差,假設(shè)△P、H1、H0均為常數(shù),且H1、H0均為零。這樣,由(6)式得:H=△P/(ρ液-ρ汽) (9)
數(shù)學(xué)模型回歸本身引起的偏差即為:
△H=△P/(ρ液-ρ汽)-△P/(ρ液標(biāo)-ρ汽標(biāo)) (10)其中:ρ液、ρ汽為某一特定溫度下氨的數(shù)學(xué)模型回歸密度值,ρ液標(biāo)、ρ汽標(biāo)為該溫度下氨的實(shí)際密度值。將(10)式除以(9)式得:
△H/H=1-(ρ液-ρ汽)(/ ρ液標(biāo)-ρ汽標(biāo)) (11)
在0℃~30℃范圍內(nèi),儲(chǔ)罐中氨的存在形式往往不會(huì)真正處于飽和狀態(tài),汽氨的實(shí)際溫度往往會(huì)高于液氨的實(shí)際溫度(zui高差距有時(shí)可達(dá)到10℃以上)。當(dāng)汽氨的實(shí)際溫度變化時(shí),其密度也會(huì)產(chǎn)生相應(yīng)的變化。因此,如果用飽和狀態(tài)下的液氨溫度,來計(jì)算汽氨當(dāng)前的密度,會(huì)引起測(cè)量的偏差。因此在計(jì)算中,當(dāng)液氨的實(shí)際溫度為15℃時(shí),(10)式中的ρ液標(biāo)應(yīng)取t=(10+15)℃時(shí)相對(duì)應(yīng)的溫度值。此時(shí),△H/H=-0.0429%。由此可以看出:在此溫度范圍內(nèi),氨的數(shù)學(xué)模型擬合過程本身引起的zui大正偏差為0.070%,zui大負(fù)偏差為0.0429%,這個(gè)偏差小到可以忽略不計(jì)的程度。因此,按照以上方案擬合的數(shù)學(xué)模型,相對(duì)準(zhǔn)確地再現(xiàn)了氨的密度與溫度之間的函數(shù)關(guān)系。
3.1.3 儲(chǔ)罐液位的計(jì)算
將(7)式、(8)式代入(6)式可得:
H=△P/(0.639-0.00145×t-3.5125×1.0324t)-H0-H1 (12)
按照上式計(jì)算出的液氨液位,基本上可以消除實(shí)際生產(chǎn)過程中現(xiàn)場(chǎng)實(shí)時(shí)溫度變化,對(duì)液位測(cè)量的影響。消除液柱引起的偏差有兩個(gè)方案:**可以在汽氨導(dǎo)壓管的zui高點(diǎn)加一隔離罐,使式(6)中的H1為一常數(shù);二是取消差壓液位變送器,直接采用壓力變送器,測(cè)量?jī)?chǔ)罐頂部的汽氨壓力和儲(chǔ)罐底部的液氨壓力來計(jì)算液位。方案二可以直接利用現(xiàn)已安裝的壓力變送器,不需要再增加設(shè)備,只需要在現(xiàn)有的DCS控制系統(tǒng)中,改變?cè)械慕M態(tài)就可以實(shí)現(xiàn)。因此,選用了二種方案。
根據(jù)液體的靜壓力原理和液體的連通器原理得:
H=(P0-P1)/ρ液(13)
P0=P液-H0×ρ液(14)
P1=P汽+(H1-H)×ρ汽(15)
將(10)式、(11)式帶入(9)式:
H=(P液-P汽)(/ ρ液-ρ汽)-H0-(H1+H0)×ρ汽(/ ρ液-ρ汽)(16)將(7)式、(8)式帶入(12)式,求出的液位計(jì)算公式為:
H=(P 液 - P 汽)(/ 0.639- 0.00145 × t- 0.0035125 ×1.0324t)- H0-(H1 + H0)× 0.0035125 × 1.0324(t/ 0.639-0.00145×t-0.0035125×1.0324t) (17)
其中,P液為液氨壓力的實(shí)際測(cè)量值,P汽為汽氨壓力的實(shí)際測(cè)量值,H1為液氨壓力變送器安裝位置距液氨儲(chǔ)罐底部的距離,H0為汽氨壓變送器表安裝位置距液氨儲(chǔ)罐底部的距離,t為被測(cè)介質(zhì)氨在飽和狀態(tài)下的實(shí)際溫度值。從(17)式可以看出,儲(chǔ)罐液氨實(shí)際高度H的大小取決于P液、P汽、H1、t和H0的值,壓力變送器的安裝高度H1、和H0的值是固定不變的,t是現(xiàn)有DCS控制系統(tǒng)中已經(jīng)測(cè)量到的變量值。
4 結(jié)論
本論文找出了導(dǎo)致甲醇廠液氨儲(chǔ)罐液位,在實(shí)際測(cè)量過程中存在較大偏差的根本原因,并提出了切實(shí)可行的溫度和液柱補(bǔ)償糾偏方案,采用差壓液位變送器進(jìn)行液位計(jì)測(cè)量方案,基本消除了液氨實(shí)際溫度變化和液柱高度等不確定因素,對(duì)測(cè)量精度的影響,達(dá)到了液氨儲(chǔ)罐液位*監(jiān)測(cè)和控制的要求。同時(shí),對(duì)解決同行業(yè)、同類相關(guān)介質(zhì)液位的*測(cè)量問題,提供了理論思路。
受歡迎產(chǎn)品
- 液位壓力變送器
- 壓差變送器
- 法蘭式液位變送器
- 靜壓式液位變送器
- 隔膜壓力變送器
- 3051壓力變送器
- 壓力液位變送器
- 一體化溫度變送器
- 衛(wèi)生型壓力變送器
- 單法蘭液位變送器
- GPRS無線遠(yuǎn)傳壓力|差壓|液位|變送器,液位計(jì)
- 防腐投入式液位變送器
- 差壓液位變送器
- 磁翻板液位變送器
- 雙法蘭液位變送器
- 電容式液位變送器
- 浮球液位變送器
- 差壓變送器
- 微壓差變送器
- 雙法蘭差壓變送器
*新資訊文章
- 液位計(jì)的聯(lián)鎖值低于報(bào)警值是否不合理?
- 針對(duì)雙法蘭液位計(jì)膜片保護(hù)的安裝改造方法詳解
- 工業(yè)自動(dòng)化設(shè)備中常用的壓力變送器
- 壓力傳感器的分類、特點(diǎn)以及用途
- 在稠油熱采平臺(tái)中如何對(duì)壓力變送器選型及安裝的研究
- 智能液位變送器在制漿造紙中的使用說明及維護(hù)方法
- 液位變送器在制漿紙中的應(yīng)用和維護(hù)情況介紹
- 壓力變送器常見故障的四點(diǎn)解決對(duì)策
- 加壓鍋爐汽包中利用差壓變送器測(cè)量封閉水箱水位的調(diào)試過程
- 浮球液位變送器的產(chǎn)品原理及使用時(shí)的注意事項(xiàng)
- 關(guān)于生產(chǎn)衛(wèi)生型壓力變送器的衛(wèi)生級(jí)設(shè)計(jì)的**性要求
- 當(dāng)使用平膜壓力變送器時(shí)出現(xiàn)以下誤差是無法避免的
- 壓力變送器與壓力傳感器有什么不同
- 壓力變送器常見問題排查5點(diǎn)方法
- 簡(jiǎn)述單法蘭與雙法蘭液位變送器區(qū)別有哪些?
- 為什么壓力變送器的信號(hào)輸出常用的是4-20mA dc的原因分析
- 簡(jiǎn)述電容式、擴(kuò)散硅、陶瓷式微差壓變送器的區(qū)別
- 國(guó)內(nèi)液位變送器產(chǎn)業(yè)的發(fā)展趨勢(shì)
- 電容式壓力變送器的應(yīng)用范圍及產(chǎn)品特點(diǎn)介紹
- 決定電容式壓力變送器的選型的幾個(gè)關(guān)鍵參數(shù)要求及相應(yīng)方法